IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

On the theory of difference frequency generation and light rectification in the scanning

tunnelling microscope

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys.: Condens. Matter 4 7341
(http://iopscience.iop.org/0953-8984/4/36/009)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.96
The article was downloaded on 11/05/2010 at 00:30

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/4/36
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys.: Condens. Matter 4 [1992) 7341-7354. Printed in the UK

On the theory of difference frequency generation and light
rectification in the scanning tunnelling microscope

A Levy Yeyati and F Flores

Departamento de Fisica de la Materia Condensada CXI!, Universidad Auténoma de
Madrid, E-28049 Madrid, Spain

Received 28 May 1992

Abstract. The probiem of currents induced in the scanning tunnelling microscope due to
incident laser radiation is analysed. We use a tight-binding description of the microscope
tunnelling junction, and the interaction with the laser field is taken into account by an
effective time-dependent coupling between tip and sample. The currents generated at
frequencies that are linear combinations of the incident freguencies are then obtained
with the help of a non-equilibrivm Green's function formalism. Particular attention
is paid to the rectification and difference frequency generation effects. In this work
we extend previous results for the rectified current to the case where a direct bias
is applied in addition to the laser field. It is shown that in the limit of very low
frequencies the dynamical response may be deduced from the static characleristic eurve.
In order to compare with recent experimental data, we perform model calculations for
a graphite sample and study the induced photocurrent as a function of bias voltage,
tip-sample distance and photon energy. The limitations of the adiabatic approximation
are discussed. Finally, we present results for the rectified current in the presence of an
adsorbed molecule with a characteristic vibrational mode, The contribution from inelastic
processes is obtained to the lowest order in the electron-phonon coupling. It is shown
that the onset of inelastic tunnelling should be reflected as a singularity in the rectified
curtent as a function of both bias voltage and photon energy.

1. Introduction

Between the new modes of operation of the scanning tunnelling microscope (ST™M)
developed in recent years, there is a growing interest to those methods in which the
device is driven by laser radiation [1,2,3,4]. The aim of these investigations is the
development of a new tool for the detection and identification of adsorbates, as well
as for the analysis of surface-specific excitations.

For this purpose it is important to understand the basic facts associated
with the interaction between laser radiation and tunnelling electrons at the tip-
sample interface. Recent experimental evidence [3] shows that the observation of
large second-order effects like rectification and second-harmonic generation can be
related to non-linearities in the current-voltage characteristic. The same group has
demonstrated by using two laser beams of different frequencies the possibility of
generating a signal in the difference frequency [? 31, and has used it to obtain atomic
resolution images of the graphite surface [4].

Regarding the problem about the frequency limit in the dynamical response of
the sT™, it has been claimed [5] that light rectification in STM might be used to
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measure the electron tunnelling time by detecting a cut-off frequency. Estimates of
this time are in the order of 10~#s for a triangular barrier [6). The observation of
light rectification at frequencies as large as 30 THz [4, 3], however, casts doubts on the
cxistence of a clear cut-off in the dynamical response. This point will be addressed
later in light of our present approach.

In a previous work [7] (hereafter referred to as I) we have proposed a model
for analysing a STM junction in the presence of an AC photon ficld. The electrons
were described by a tight-binding Hamiltonian and the coupling with the laser field
was included via a time-dependent part in the hopping elements, With the help of
a non-equilibrium Green’s function technigque introduced by Keldysh [8] we obtained
a closed expression for the DC current (hereafter called rectified current) induced by
the laser radiation when no DC bias is applied. Here we extend this work to the case
of a non-zero bias. This requires the inclusion of higher-order terms in the effective
time-dependent coupling between the tip and the sample, that are obtained by using
very general arguments for the coupling with an electromagnetic (EM) field.

On the other hand, we present results for the difference frequency generation and
show how its signal is related to the rectified current

One of the aims of this work is also to determine up to which extent the dynamical
behaviour of the STM may be known from the static I~V characteristic. To this end we
perform model calculations for a tungsten tip and a graphite sample, and study the
behaviour of the rectified current as a function of bias voltage, tip-sample distance
and photon energy.

Finaily, we propose a simple model to study the problem of light rectification
when the tip is placed over an adsorbed molecule with a characteristic vibrational
mode. The use of the Keldysh formalism allows us to obtain the contribution to
the currents from the main inelastic processcs where one phonon is emitted and
reabsorbed during tunnelling.

The rest of the paper is organized as follows: in the next section the model is
presented and it is shown how the coupling with the external ficld may be written in
a tight-binding form. The third section is devoted to the formulation of the problem
in terms of non-equilibrium Green’s function. An outline is given of a procedure
that allows us to find the induced currents at any desired order in the external field.
In the fourth section we give the expressions for the signal generated by mixing two
frequencies and for the rectified current when a DC bias is applied. Different limiting
cases are analysed. Some numcrical results for a system modelling a tungsten tip and
a graphite sample are given and discussed in section five. The model calculations for
the rectified current in the presence of an adsorbate are presented in section six and
the paper ends with some concluding remarks.

2. Description of the laser field and effective tip—sample coupling

We represent the tip by a metallic sphere of radius R with a small protrusion including
a few atoms as shown in figure 1. This protrusion establishes the electrical contact
with the sample but its effect on the Em field at the interface is neglected.

Upon these conditions it is found [9] that the incident field normal to the sample
surface is enhanced in the gap region by a factor of order R/ D, where D is measured
as shown in figure I,

Without loss of generality we may assume that the tunnelling currents are
. localized between two atoms: one at the tip of the protrusion and the other on



Difference frequency generation and light rectification in STM 7343

00

Tip Samgle

Figure l Model geometry for the tip-sampie
interface used in our calculations.

the sample surface. In the absence of any external field our system is described by
the Hamiltonian

H = HS + H’I‘ + quz Z(CIUCZG + CTZO'clo') (1)

where ¢!, creates an electron with spin o at site ¢ (i = 1 refers to the tip site and
t = 2 refers to the sample site). Hy and Hg describe the motion of electrons on the
isolated tip and sample respectively.

The EM field is then introduced by means of a vector potential A. In the tight-
binding approximation the interaction with a vector potential may be completely taken
into account by a phase factor affecting the hopping elements only. To show this we
start with the expression

6H = —%-/.J"(r) SA(r)dr (2)

which gives the change in the Hamiltonian due to a small change in the vector
potential. Here J(r) is the density current operator. In a tight-binding approximation
J is related to the hopping elements and equation (2) may be written as

ie . e
SH = “E Z (T}kc};gcjo' - Tij}a.Cka) / dA dl. (3)
ko .

This equation can now be integrated to obtain the form of the hopping elements
in the presence of an external field

e [T¢ "
'I;.kz T;Pkexp (—E/r Adl) =Tk_f'

Let us remark that this expression is valid even for a time-dependent field. Also
note that this formulation is gauge-invariant: a unitary transformation can always be
found Jeading from a shift in the site energies into a time-dependent phase in the
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hopping elements. This is equivalent to a gauge transformation that removes the
scalar potential.
For the case of a single connection between tip and sample we have

ie - .
T]z = T]l?z exp (EA(f)d) = TZI

where A(t) = Ajcos(wyt) is the typical amplitude of the field at the gap region
between atoms 1 and 2 and d is the tip-sample distance as shown in figure 1.

The coupling with the external field is controlled by the parameter o =
eAyd/hc = eEydfhw; which is much smaller than 1 for most cases of interest.
It is then possible to expand Ty, as

2
T =TS (1 + iy cos(wyt) —~ % cos(wyt) + )

and keep only the terms that give rise to the non-linear effects that one is interested
in. In I we have restricted ourselves to the first two terms in this expansion. This is
enough to obtain the rectified current up to second order when the applied bias is
zero. Here we have to go beyond this approximation and include also the quadratic
term in ¢ in order to obtain the response when a non-zero tip-sample bias is applied.

For the case of the difference frequency generation we must consider A(t) =
A, cos{wt) + A, cos(w,t). However, for the sake of simplicity, the most general
discussion given in the next section corresponds to the case of a single laser at a
frequency wy.

3. Induced currents in terms of Green’s functions

In this section we briefly discuss the Green’s function formalism used to analyse the
present non-¢quilibrium problem. In this formalism, in addition to the usual retarded
{G") and advanced (G*) Green’s {unctions, another correlation function denoted by
Gt is needed [10). It is defined as

Gl (1) = i{el, ()e;, (1))

where the angle brackets imply here averaging over available states for the system
which is out of equilibrium. One of the advantages of this formalism is that the
current between sites 1 and 2 can be obtained {rom the equation

I(t) = 3 Y (TG (1 1) - Tu(D G (1. 1). @

The different Green’s functions of this problem satisfy the following set of coupled
integral equations:

G"’(t,t’):g‘"(t,t')-{-f dt, G (1, 1)V (1,)g"% (i, 1)
—00

Gt (t,t") = /°° dt) di, [6(t — t;) + G7(2, )V ())]gt (1. 1y) (3)

=00

x [6(ty — ') + V(§,)G"(1,, )]
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where the perturbation V(t) is taken as the effective time-dependent coupling
between tip and sample, and g corresponds to the unperturbed system in which
both tip and sample are in thermodynamic equilibrium with chemical potentials p,
and p, respectively, The applied bias V = p; — u, is assumed to produce a rigid
shift of the unperturbed bands.

In order to solve equation (5) it is convenient to Fourier transform the variable
t — ¢’ into the frequency w. Then, if we call = = (¢ + t')/2, all Green’s functions
may be expanrded as

=]

G(r,w) = Z exp(inw,T)}G,(w) (6)

n=-00

Then, Dyson’s equation for the retarded and advanced Green’s functions is
transformed into a set of linear algebraic equations in the Fourier components G,
that can be easily solved by truncation at a given finite order [7],

The current given by equation (4) will also be expressed as a Fourier series. The
components {, are complex quantities which satisfy the condition I_,, = I,. These
are formally given by

=R [ 3 felw+ nwg [(Dhitw )
of (w+ (U = Dwy) (Dl (w0 = 3lwy)]
— [(Di(w + $'wy)gF~ (w + 3 — Drwp)( Dy (w0 — Flawg)]
x gi(w — grwg) + [(Dh)i(w + Jlwe)gf ~(w + 3T = Dwy)
x (D) p(w = Hwy)] 03w ~ dnwy) — gh(w + dnwy)
x [(Dy)(w + $wg)gf™ (w+ J( = Dwy)( D (w - jlwy)]}
(D

where D™ =V + VG"*V (integration over internal times is implicitly assumed).
Equation (7) is the starting point for calculating the induced currents at any

desired order in the external field. Notice that the problem is reduced to obtaining

the components (D}});, which in turn can be obtained from the Green’s functions

components { G} ).

4. Difference frequency generation and rectified current

When there are two fields of frequencies w, and w, at the microscope interface, all
Fourier transformed quantities like the Green’s functions G defined in the previous
section have components G, n, Where the subindexes n; and n, refer to the order
of expansion in the frequenmes w, and w,, respectively. The signal emitted at the
difference frequency w; — w, is proportional to the current component I; _,

Keeping terms up to second order in the field we obtain the following expression
for I) _,

11,_1=ﬂ‘3‘—2@"2)—/ dw S (w+ A)S¥w — A)
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x {[v3(w,8,%) + (6(w, A, T) + 5 (w,A)) of “(w+ 5)

+ (8*(w, A, W) + B*(w,-A)) gF (w - A))

X (gi{w+ A) — gi(w - A))

+ [Yi(w, A, W) + (6(w, -A,B) + f(w,-A)) gf " (w—A)

+ (8 (w,A,®) + 6w, A)) gf (w+ A)] (g5(w - A)

—gi(w - A)) + (T — -B)} | (8)

where

A= %(wl - wy)
W= %(w1+w2)
£5%(w) = [1- (Th) gl (w)gy* (w)]
B (w,A) = —4THE (w — A} (1 + (T) 05" (w + A)g]* (w - A))
v (w, A, D) = (1—(T“z) G(w+ A)gi(w + 1)) | (w + ) P
x (1 - (T) g} (w - A)gi(w + ®)) g}~ (w + @)

& (w, A, w) = (T?’z)ZE”("m + ) [E"(w— A) (97 (w + A)g)* (w + B)

+ o7 (w - A)gy" (w+ ) + 26™(w, A) g™ (w + W)gy™ (w + )]

In the limit A — 0 and for o) = a, = «, {; _, reduces to the rectified current
I that takes a much simpler form. At zero temperature [ is given by

2 2 #teV4uy
I, = = (}1 ) [/ dw Fy(w, —wy)
13

uteV —wy el
+f dw Fy(w, wy) + 2/ dw Fy(w) ©
! K

where

Fi(w, wy) =} S(w)E (w + wy) P 1= (T) gi(w + wy)gh(w) [*
x Im(g5(w + wy)) Im(g}(w))

Fy(w) =] £'(w) [ Re(8"(w, wy, 0) + 6 (w, —wy, 0) + 28(w,0))
x Im(g3(w)) Im(g}(w))

This expression reduces to that obtained in [ for V = 0.

It is important to note that I, _, does not have any singular behaviour when
A — 0. Somc recent expenmenta] data {3] indicate that the difference frequency
signal behaves asd A~! for A in the range from 1 to 100MHz. This bchaviour
cannot be explained within our model and must be related to the coupling with
surface vibrational modes of extremely low frequencies [1].

Notice that in the expenmems of [1] A g 100MHz is such a small photon energy
(< 107* meV) that in this regime we can approximate I, _, to a good accuracy by
I,. Within this limit, the power emitted in the differcnce frcquency is a measure of
IZ. From the experimental point of view, mecasuring the emitted radiation may be
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simpler than measuring the rectified current, since the latter must be subtracted from
the normal tunnelling current,

Another important point is that we can show from equation (9) that /; in the
limit wy — 0 is proportional to the sccond derivative of the static /- curve, i.e. we
can show that [3]

i » 8ZIDC
Jim, T = (eByd) (W)

This can be easily checked by considering the limit of large tip-sample distances,
where an expansion up to second order in the hopping T\, yields

Iy = 03 [IP9(V 4 wy) + IPS(V = wy) - 21°5(V)] (10)

where
‘ 2 +V
ey = S8 [ g im(g30) (i)
u

Equation (10} is just the three-point approximation to the second-order derivative
that gives the previously mentioned result in the limit wy — 0. This is the physically
expected result [3]: in the limit of very low frequencies the system follows adiabatically
to the external perturbation and thus the dynamic response can be derived from the
static (non-linear) response.

An equation like (10) has been used by Wingreen {11] to analyse the problem
of frequency response in double-barrier structures. This result may also be obtained
from our formulation if a central site with a time-dependent site energy is considered
and the energy dependence of the density of states DOS of the left and right electrodes
is neglected. Our result for the rectified current (equation 9) is more general as it
takes into account the full energy dependence in the propagators.

5. Some results for a model graphite surface

Many experiments on STM with laser radiation have been performed on graphite
samples. It is thus desirable to perform calculations for this particular system.

As in a previous work [12], we describe the electronic structure of a graphite
surface by a tight-binding Hamiltonian on a hexagonal lattice with one orbital per
site. The hopping elements between first neighbours are fitted in order to give the
band width of ab initio calculations {13]. Using the recursion method [14] with more
than 200 levels in the continued fraction, we obtain the smooth surface electronic DOS
that is shown in figure 2. This is in reasonable agreement with more sophisticated
calculations.

On the other hand, we represent the tip electronic structure by a semi-elliptical
band with a total width of 16eV, filled up to 1.25 electrons; this corresponds to the
number of sp electrons in tungsten. The hopping integral between tip and sample
atoms may be fitted by [12]

0 dy \* _es
le:T“(Hdu) °°
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where d,, is the close contact distance, taken as 2.5 A, T, >~ 1.2¢eV and o = 0.58A-1,

We shall concentrate on the behaviour of the rectified current as a function of bias
voltage, tip-sample distance and photon energy. As mentioned above, the following
results also hold for I; _; when A = (w; —w,)/2 is small enough; this is indeed the
case for the available experimental data,

In order to compare with experimental results we show in figure 3 our calculations
for both the static current-voltape characteristic and the rectified current as a function
of bias voltage for different tip-sample distances. In agreement with the experimental
results the /-1 curves show a nonlinear rise. The rectified current has a clear peak for
a bias voltage of ~ 2V, corresponding to the peak in the graphite Dos. Unfortunately
the peak region has not been analysed in the experimental data of [4].

When the tip-sample distance is reduced but is still larger than ~ 4.5A the
rectified current increases. However, as shown in figure 4, this behaviour is not
monotonic, As already noted in I, the rectified current has a maximum for a tip—
sample distance almost 2 A larger than the close-contact distance. It can be observed
from the curves in figure 4 that the maximum position slightly displaces to larger
distances when the bias voltage is increased. On the other hand, as the output
rectified signal increased with the applicd voltage, a large enough DC bias could help
in the experimental detection of this maximum.

It is interesting to explore with our model the depariure from the adiabatic
response. In figure 5 the rectified current is plotted against bias voltage for different
photon energies: 0.1, 0.2 and 0.3 eV. Note that for the CO, lasers used in experiments
of [4] Aw; ~ 128 meV. The second derivative of the static /-V curve is also shown for
comparison. This has been obtained using a finite difference scheme with a voltage
step of SmV.

As can be observed, the agreement between [ and its adiabatic approximation
at higher photon energies is poorer in the peak region. The effect of a finite photon
energy is to smear out the structure on a scale given by fiwy, and thus any structure
in the -V curve on a smaller scale may be completely washed out.
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6. Rectified current in the presence of an adsorbed molecule

The relation between the rectified current and the second derivative of the
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characteristic curve discussed in the previous sections, suggests that [, should be
particularly affected by the coupling of the tunnelling electrons with the localized
vibrations of adsorbed molecules. The opening of an inelastic channel for tunnelling
must be reflected as a peak in the rectified current. Calculations based on a clasical
potarizability picture for the rectified current in the presence of large adsorbate
molecules has recently been presented by Molotkov [15]. Here we concentrate on the
case of small molecules at Jow temperature that must be analyscd by a full quantum
mechanical description.

Adsorbate

l
-®

T12

T

Figure 6. Schematic drawing of the model considered {o study the photoinduced currents
in the presence of an adsorbed molecule,

In order to describe this situation we consider a simplified model as depicted in
figure 6. The adsorbate is characterized by a vibrational mode of frequency w, and
has an electronic resonant level at ¢,. This system is described by the Hamlitoman

VH = H’I‘ + HS + le(c{ac’za + CTZo-clcr) + T23c£ocsc .
+ T32C3a°za + &), e + hw, ale + Ma+ at)cl, ey,
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where a! and a are boson operators for the vibrational mode, Ty; and T;, are the
hopping elements connecting the adsorbate with, respectively, the tip and the sample.
The term in A describes the coupling between local phonons and charge excitations
on the adsorbate. A similar model has been considered by Persson and Baratoff [16)
Here, the interaction with the laser field is taken into account by To,(t).

If we assume that T,; is small enough (T, < T},), we can approximate I, by
equation (10). The problem is then reduced to obtaining an expression for I°C in
the presence of the adsorbate’s vibrational mode. Using the Keldysh formalism and
keeping contributions ug to second order in A [17] (details will be given elsewhere)
it can be shown that 7P decouples into an elastic part, given at zero temperature by

pteV
=k [T dw | Ghw) P Imgh(w) Imgi(w) Q)
"

and an irelastic part given by

pteV —hwp

I£C=kA2/
73

where k = (T3, T%)? /8. G1¥ in equation (12) is the retarded Green’s function
for zero electron-phonon coupling. An explicit expression for I§C at second order
in X is obtained by replacing G5, in equation ¢11) by ‘

dw |G (w + w,) G (w)[* Tm g (w) Im g3 (w + w,)
(12)

0 0 {0
G"( )+ G"'( )ZI‘ZG (0}

Then, neglecting the real part in 25, (this is valid because the imaginary part
contains the most singular contribution [17]), we obtain

DC(u D2
156 = 1390 4 179 (13)
where
wteV =hw
1992 _ 21&/ " dw | G (w + wy) [ Im GO (w)
73
x Ga3(w + wy) Im g} (w) Im g3 (w). (14)

The terms I, Dc(z) and I2° yield the phonon effects up to second order in . Let
us analyse these expresswns for the case where the energy dependence of Im{g})
and Im(g2) can be neglected. All the integrands are then determined by the form of

G’;é”)(w) that can be approximated by a Lorentzian [16]:

. 1
(0)( ) W — €y —ir.

The width T’ = T% Im(g}) is of the order of leV for a chemisorbed molecule
on a metal surface, This implics that the presence of the adsorbate modifies the
tunnelling current only if the resonant leve] lies a few eV from the Fermi energy.
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On the other hand, both the inelastic contribution Ii‘l?c and the contribution
IgC(Z) differ from zero only when leV| > hw,, ie. when the tunnelling electrons

have enough energy to emit one phonon. 13“2) takes into account those (virtual)
processes in which the emitted phonon is readsorbed during tunnelling, The present
approach does not include the possibility of multiphonon processes of higher order
in A

Before analysing the rectified current it is instructive to look at the effect of the
adsorbate on the normal tunnelling current and its first derivative. Figure 7 shows a
schematic representation of the typical behaviour that can be found for both ¢; <0
and €, > 0, assuming that 2 = 0 and | ¢, + fiw, |< I'. 'We have chosen the relation
A/T to be arbitrarily large in order to have a clear view of the qualitative behaviour,
It can be observed that in both cases there is a decrease in the conductance when
resonant tunnelling via the vibrational mode is activated [16]). This is due to the
negative contribution DC?) that is larger than ID€. The background conductance

el

related to 13““’ increases with bias for V' < e, and decreases in the reverse case.
This qualitative discussion shows that the rectified current, which is essentially
given by the second derivative of the tunnelling current (equation (10)), will be
characterized by a negative or positive background depending on the relation between
€; and V, and by an inverted peak at V' = hw,. If the experiments are performed
using the difference frequency generation effect, the onset of inelastic tunnelling will

be refiected as a positive peak in the emitted power when ¢, < 0 or as an inverted
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Figure 8. Rectified current in the presence of an adsorbed molecule with a vibrational
mode at fiwp, = 0.2eV as a function of bias vollage and photon energy,

peak, or even an inverted double peak, when ¢; > 0.

The curves in figure 8 show the behaviour of the rectified current in the presence
of the adsorbate as a function of both the bias voltage and the photon energy. For
this example we have chosen €, = 0.50eV, Aw, = 0.20eV and (A/T)? = 0.1 in
order to represent the stretching mode of a smallpmolecule like CO or NO adsorbed
on a metal surface [18].

The width of the peak in IU as a function of bias is determined by hwy; its
intensity decreases as (hwy)~!, in agreement with equation (10). It can be seen
that I, may even change its sign when the photon energy is not very large. I as a
function of photon energy exhibits a sharp drop at Aw, ~ Aw, — eV. This drop is
more pronounced for increasinhig bias voltage.

It is worth mentioning that varying ¢, can modify the peak height and the rectified
current background as discussed above but the qualitative shape of the curves remains
unchanged. As expected, the peak intensity reduces when I' is increased.

7. Concluding remarks

In the present work we have extended the theoretical approach reported in I in many
different aspects. First, the inclusion of higher-order terms in the coupling with the
laser field has made it possible to consider the induced photocurrents for the case
where a direct bias is applied. We have obtained closed expressions for the difference
frequency signal and for the rectified current and showed how they reduce to the
adiabatic response in the limit of very small frcquencies. Second, model calculations
for a graphite sample have been presented as an attempt to make contact with
recent experimental data. Finally, we have proposed a model to describe the induced
currents in the presence of an adsorbed molecule which can be used to analyse future
experimental resuits {19] in this field.

Reparding the problem of the frequency limits for the dynamical response in
STM, our model suggests that there is no clear cut-off except for photon energies
comparable to the total electronic band widths. Obviously, the assumption of perfect
screening as discussed in our model [7] for the coupling with the EM field breaks



7354 A Levy Yeyati and F Flores

down at lower frequencies, in the region of surface plasmons [20]. Thus, it is not
the electron tunnelling time but rather the EM coupling which limits the dynamical
response.

In conclusion we believe that, in spite of its simplicity, our approach can account
for many different phenomena related to laser induced tunnelling in STM and can
also be applied to study the same problem in double-barrier structures. It has also
some advantages over other theories recently proposed [21] based on the transfer
Hamiltonian method. The main advantage is that the use of the Keldysh formalism
provides a direct way to obtain the induced currents and to include many-body effccts
like electron-phonon or electron-¢lectron interactions. On the other hand, the
combination of the Keldysh formalism and tight-binding representation is a useful
scheme for taking into account the local clectronic properties that are relevant in 2
description of the main physical effects in such systems.
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